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Carbon dioxide is the ideal C1 source for organic synthesis
because of its abundance, nontoxicity, and potential as a renewable
resource.1 Thus, designing mild methods to catalytically activate
CO2 and form C-C bonds represents a challenge of both academic
and practical importance. Grignard and organolithium reagents are
strong nucleophiles which react with CO2 directly to form valuable
carboxylic acid products and derivatives; however, their poor
functional group compatibility ultimately limits their use.2 Iwasawa
and co-workers recently reported a Rh-catalyzed carboxylation of
aryl- and alkenylboronic esters.2b Herein, we report a complemen-
tary and mechanistically distinct protocol—a Ni- and Pd-catalyzed
cross-coupling between organozinc reagents and CO2.3 Our trans-
formation represents a mild and functional group tolerant strategy
for carboxylation.2,4 Moreover, this process can be considered an
extension of the Negishi cross-coupling to include CO2 as the
electrophilic partner (Scheme 1).

We initially focused our attention on Aresta’s complex, Ni(η2-
CO2)(PCy3)2 (1), the first metal-CO2 complex to be isolated and
characterized.5a Aresta’s report in 1975 sparked a general interest
in using transition metals to activate and fixate CO2.6 Ironically,
no method for using 1 in catalytic transformations with CO2 had
been developed.5,7 It appeared to us that Aresta’s complex (1) could
undergo transmetalation with organozinc reagents to form orga-
nonickel species 2 (Scheme 2).8 Reductive elimination from 2 would
furnish a new C-C bond, generating a zinc carboxylate and low
valent Ni(PCy3)2 (3), which would bind another molecule of CO2

through an oxidative cycloaddition to regenerate 1.
Control experiments confirmed that no background reaction

occurs between phenylzinc bromide and CO2 under mild conditions
(Table 1, entry 1). In agreement with our proposal, treatment of
PhZnBr with a catalytic amount of 1 (10 mol %) under an
atmosphere of CO2 resulted in the desired benzoic acid in >95%
after acidic workup (entry 2). While catalytic fixation of CO2 by
way of insertion to M-C bonds2b or by Lewis acid activation9 has
been proposed, this is a rare example of catalytic activation by η2-
coordination of CO2 to a transition metal.10 Rather than using
the Aresta’s complex directly, we examined the use of
[Ni(PCy3)2](N2)11 to generate 1 in situ. Under these conditions, the
product was formed in >95% (entry 3). For convenience, we also
examined the use of commercially available Ni(COD)2 as a catalyst
(entry 4). These results support that complexes 1 and 3 are
intermediates in the catalytic cycle.

Due to their high versatility and robustness, we next examined
the use of Pd salts as catalyst for CO2activation (Table 1). Notably,
Pd(η2-CO2)(PMePh2)2 has previously been isolated and character-
ized.12 We now report that Pd(PCy3)2 is catalytically competent,12

affording carboxylation in high yields (entry 5). Pd2(dba)3 as a Pd(0)
source was ineffective presumably due to competitive binding of
trans,trans-dibenzylideneacetone (dba) and CO2 (entry 6). Indeed,
the addition of small amounts of dba completely inhibits the
reaction. Pd(OAc)2 serves as a convenient and easily handled

precatalyst (entries 7 and 8), presumably forming Pd(0) in situ.13

With this catalyst, use of a simple balloon filled with CO2 allows
efficient carboxylation.14 A significant ligand effect was observed;
PPh3, AsPh3, 1,3,4,5-tetramethylimidazol-2-ylidene (TMI), and 2,2′-
bipyridine (bpy) ligands resulted in less than 10% of the carboxy-
lated product (entries 9-12). These observations support the idea
that electron-rich phosphines (e.g., PCy3 and PtBu2Me) are neces-
sary for oxidative addition to occur between Ni(0) or Pd(0) and
CO2.6

Next, we prepared a range of arylzinc bromides by the Gosmini
method (Co-catalyzed insertion of zinc into C-Br bonds)15 to

Scheme 1. Analogy to the Negishi Cross-Coupling

Scheme 2. Proposed Catalysis with Aresta’s Complex

Table 1. CO2 Activation with Nickel and Palladium

entry x [M] ligand yield (%)a

1 0 none none 0b

2 10 Ni(η2-CO2)(PCy3)2 (1) - >95c

3 5 [Ni(PCy3)2]2(N2) - >95b

4 10 Ni(COD)2 PCy3 78b

5 10 Pd(PCy3)2 - >95
6 5 Pd2(dba)3 PCy3 <5
7 1 Pd(OAc)2 PCy3 >95 (90d)
8 1 Pd(OAc)2 PtBu2Me >95
9 1 Pd(OAc)2 PPh3 7
10 1 Pd(OAc)2 AsPh3 2
11 1 Pd(OAc)2 TMIe 6
12 1 Pd(OAc)2 bpy 4

a Yields determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as an internal standard. b Toluene used as solvent.
c Toluene-d8 used as solvent. d Isolated yield. e TMI ) 1,3,4,5-
tetramethylimidazol-2-ylidene.
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investigate the scope of our carboxylation (Table 2). Arylzinc reagents
prepared by this route reacted well with Pd(OAc)2 as the precatalyst,16

although higher loadings were required. Both electron-rich and
electron-poor organozinc reagents were carboxylated in good to
excellent yields (entries 1-9), while aromatic rings bearing π-acceptors
gave moderate yields (entries 10-12). Notably, substituents at ortho,
meta, and para positions can be tolerated (entries 2-4). The carboxy-
lation of arylzinc bromides displayed a significant scope, allowing
functionalities traditionally incompatible with Grignard reagents (e.g.,
ketones, esters, nitriles; entries 10-12).2 A heteroaromatic reagent
could also be effectively carboxylated (eq 1).

Complimentary to our Pd-based protocol,17 we found that, under
Ni catalysis, both aromatic and aliphatic zinc reagents could be
tolerated (Table 3). Commercially available PhZnBr, Ph2Zn, and
n-C5H11ZnBr underwent CO2 incorporation to produce the corre-
sponding carboxylic acids in good yields (entries 1-3). Alkylzinc
reagents (prepared by Knochel’s method)18 bearing various func-
tionality (e.g., Ph, Cl, AcO, EtCOO substituents) were also well-
tolerated (entries 4-7). In contrast to Iwasawa’s Rh-catalyzed

method,3 this approach enables carboxylation of functional group
compatible aliphatic nucleophiles.19

In summary, we have presented a novel catalytic strategy for
carbon dioxide incorporation. Aresta’s complex can catalyze the
cross-coupling of organozinc reagents with CO2, and Pd(OAc)2 is
shown to be a convenient catalyst precursor for carbon dioxide
activation. We are further investigating the mechanism of this
process and plan to use this concept toward asymmetric carboxylation.
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Table 2. Pd-Catalyzed Arylzinc Carboxylations

entry functional group (FG) yield (%)a

1 none 90b,c

2 p-OMe 90
3 m-OMe 97
4 o-OMe 80
5 p-OAc 97d

6 p-Me 81e

7 p-CF3 90
8 p-Cl 88
9 p-F 94
10 p-CN 73
11 p-COMe 75
12 p-COOEt 76e

a Isolated yields. b Organozinc solution in THF. c With 1 mol % of
[Pd], 2 mol % of PCy3. d Isolated as 4-hydroxybenzoic acid after
saponification with 1 M NaOH. e With 5 mol % of [Pd], 10 mol % of
PCy3.

Table 3. Ni-Catalyzed Aryl- and Alkylzinc Carboxylations

entry RZnX yield(%)a

1 PhZnBr 74b

2 PhZnPhc 80
3 n-C5H11ZnBr 90
4 Ph(CH2)2ZnBr•LiCld 80
5 Cl(CH2)3ZnI•LiCld 92
6 AcO(CH2)4ZnBr•LiCld 75
7 EtOOC(CH2)4ZnBr•LiCld 86

a Isolated yields. b With 10 mol % of Ni(COD)2 and 20 mol % of
PCy3. c In situ prepared PhZnEt reacts poorly. d See ref 18 for
preparation.
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